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1 Introduction

A quantum circuit or quantum algorithm acting on an n-qubit system is nothing more than the action of unitary
matrix on the state vector of the qubits. Up to a global phase, these operators lie in the Lie algebraic Special
Unitary group SU(2n): unitary matrices of size 2n × 2n with complex valued entries and a real determinant 1.
The necessity for such operators is clear, in that any operation on n-qubits is simply a transformation from one
state to another by action of a rotation through the computational space: the input vector has 2n dimensions,
and a vector with 2n dimensions is output. Furthermore, in order to maintain the coherence of the systems, the
operator must be unitary and maintain the total probability at 1.

Quantum computers do not apply any arbitrary unitary operator, and instead must select their qubit op-
erators from a set of universal pre-defined and architecture specific implementable gates, usually a single qubit
rotation operator and an entangling gate such as the CNOT or i

√
SWAP . Generally only unitaries acting on a

pair of qubits are directly implementable, but interesting computations will require circuits and unitary operators
acting on the full space of the system. A key question arises: what is the most efficient method of implementing
a desired unitary operator using the minimal number of quantum circuit elements? For many algorithms, the
structure of the operator allows for efficient decomposition into circuit elements, and it is often these circuits
that are most promising for future applications in quantum computing. However, in the absence of an externally
calculated circuit decomposition for a gate, it is still useful to know how to take any arbitrary operator and
implement that gate on a quantum computer.

There are two key limiting factors for unitary decomposition, which are essential for understanding the useful
application and scope of these methods. First, for an n-qubit unitary matrix, the CNOT gate depth scales as
O(4n). The scaling here is proven to be minimal, so while certain algorithms improve the coefficient of the 4n

term, in the worst case and given no prior knowledge of a unitary, the computation time scales exponentially
with the number of qubits. Essentially this means that not all circuits will provide a speed-up over a classical
system, because it can take exponential time to run a quantum circuit. Second, the current best algorithms
for decomposing a unitary matrix are necessarily more computationally expensive than simply simulating the
quantum circuit. Specifically, methods such as the cosine sine decomposition (CSD) require calculating the
eigenvalues of the unitary operator, which is often what the quantum circuit would be used to find in the first
place. However, given a proper understanding of the constraints of arbitrary unitary matrix decomposition, there
are plenty of useful applications for the algorithms, especially in near term applications. For instance, the most
efficient construction of the circuit for an arbitrary gate U ∈ SU(2) or U ∈ SU(4) are both well understood
and easily implementable, and as such are valuable as elementary components in larger circuits. Although it
is impractical to use arbitrary decomposition on systems larger than a few dozen qubits, it can be useful as a
tool for implementing new algorithms on limited scale test circuits before an efficient method of decomposition
has been discovered. Arbitrary decomposition assumes very little about the structure of the operator, so it is
generally possible to find a much more efficient decomposition by hand, albeit this is likely not a simple task.
Additionally, arbitrary unitary decomposition provides a maximal circuit depth for any algorithm operating on
an n-qubit system. For example, any algorithm on two qubits which would naively require 10 CNOT gates and
30 single qubit rotations can always be optimized to at most require 3 CNOT and 18 single qubit rotations [4, 8].

In this paper, we present three key results in unitary decomposition. First, we present a primitive algorithm
which proves the universality of single qubit operations and CNOT gates. Next, we present a constructive
algorithm to iteratively construct a near best-case and easily implementable decomposition. Finally, we present
key results for the Cartan decomposition construction of a universal circuit, which is the foundation of the
currently best known constructive decomposition algorithm [2].

2 Universal Gates

To construct our universal basis of gates, we will confine ourselves to the following physically implementable gate
operators: RZ(θ), an arbitrary rotation around the Z axis by an angle θ, Ry(α), an arbitrary rotation around the



Y axis by an angle α, and the Controlled-Not gate, which have matrix representations

Rz(θ) =

[
e−i

θ
2 0

0 ei
θ
2

]
Ry(α) =

[
cos(α2 ) −sin(α2 )
−sin(α2 ) cos(α2 )

]
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1)

These operators are universal, as we will demonstrate, but they are by no means the only universal elements. In
particular, either Rz or Ry can be replaced with Rx without affecting any of the following results. Additionally,
these operations represent operations on a single qubit or pair of qubits but are only physically implementable
on physical, not logical, qubits. Universal gates for logical qubits are not addressed in this paper.

3 Givens Rotations

3.1 Decomposition into Givens Rotations

The QR decomposition theory states that any complex operator A can be decomposed into an orthogonal operator
Q and an upper triangular matrix R as A = QR. Essential to our application is that the operator Q can be further
decomposed as a sequence of 2D Givens rotations, which apply a rotation θ in the ith and jth plane as

V (i, j, θ) =



. . . . .
.

c = cos(θ)ii 0 −s = −sin(θ)ji
0 1 0

s = sin(θ)ij 0 c = cos(θ)jj

. .
. . . .

 (2)

A d-dimensional square matrix Q can be decomposed into at most d(d−1)
2 of these two-level Givens rotations,

and for a unitary matrix A = U , we can additionally assert that R must be a unitary upper triangular matrix,
which is diagonal. So, for a unitary operator U, it is possible to construct a sequence of Givens rotations Vn
such that U = V1V2V3V4...Vd(d−1)/2R [1, 6, 5]. For an n-qubit system, U has dimension 2n and a sequence of
1
2 (4n − 2n) ≈ O(4n) Givens rotations are required to construct it.

3.2 Constructing Givens Rotations using Elementary Circuit Elements

We must now concern ourselves with the construction of the Givens rotations using our chosen universal basis.
Following the formulation used by Nielsen and Chuang [6], we first note that for a rotation V (i, j, θ), V only acts
non-trivially on the two binary basis vectors with non-zero elements at the ith and jth positions, which we will
call |i〉 and |j〉. A Grey code is a sequence of binary numbers, starting at the binary sequence for i and ending at
j, which changes only by one place each step. For the 4× 4 matrix

U =


c 0 0 −s
0 0 0 0
0 0 0 0
s 0 0 c

 (3)

We have |i〉 = |11〉 and |j〉 = |00〉. So, as the simplest example, the Grey code is the sequence

A B
0 0
0 1
1 1

Table 1: Grey code sequence for decomposing U in Equation 3



We can implement the circuit by performing a multi-controlled operation controlled by the static elements
of each step of the Grey code and targeting the changing element with an X operation. This is repeated for all

but the final step, during which we perform the operation of the submatrix

[
c −s
s c

]
= Ry(2θ) controlled by the

state of the remaining circuit elements. Finally, we undo the operations to return the system to |i〉.

A Ry

B •

Figure 1: Circuit Implementation of the Givens rotation in Equation 3

Other results show that multi-controlled gates can be constructed using O(n) CNOTs and single qubit
rotations [6], the grey code will have at most n-1 terms, and R, a diagonal matrix, can be efficiently implemented
[5]. Thus, the total CNOT count to implement an arbitrary unitary is of the order O(n24n). This is by no means
an optimal solution, but it is sufficient to demonstrate the universality of the single and two qubit gates.

3.3 Implementation Using Cosine Sine Decomposition

Using two decompositions, the cosine sine decomposition and quantum Shannon decomposition, we now demon-
strate how to construct a decompsoition with O(4n) CNOT efficiency. It is used to factorize an arbitrary unitary
matrix on n qubits in a way that is easily calculable using existing optimal methods for performing singular value
decomposition and eigenvalue decomposition. An in-depth exploration of the method can be found in Krol [4],
and we will summarize the key results here.

First, we consider the quantum Shannon decomposition [7], which allows for a recursive calculation of the
decomposition for an n-qubit operator into a sequence of four (n-1)-qubit operators and three multi-controlled
single qubit rotations on the nth qubit. From there, the (n-1)-qubit operators can be again decomposed until
they are trivial to implement using the single qubit operator decomposition that we demonstrate in Section 5.
Figure 2 shows the basic circuit decomposition applied to a single step.

U
/

= |ψn〉 Rz Ry Rz

|ψn−1ψn−2 . . . ψ1〉 / V1 V2 V3 V3

Figure 2: Quantum Shannon Decomposition [7]

It remains to calculate the values for the Vn and controlled rotations, for which we introduce the cosine sine
decomposition on the matrix n-qubit operator U

U =

[
R0 0
0 R1

]
︸ ︷︷ ︸

R

[
C −S
S C

]
︸ ︷︷ ︸

D

[
L0 0
0 L1

]
︸ ︷︷ ︸

L

(4)

where C and S are real diagonal matrices satisfying C2+S2 = I and L0, L1, R0, and R1 are square unitary matrices
of dimension 2n−1. The formulation for R (and L) is such that it is a uniformly controlled multi-qubit operator
controlled by the nth qubit and performing either R0 or R1. Additionally, D is a multi-controlled operator which
acts as a single Y rotation θ on the nth qubit. So, we can write the circuit diagram for U as

Ry

/ L R

It’s not immediately clear that this circuit takes the same form as quantum Shannon, but we can do additional
processing on L and R to show these two formulations are equivalent.



We now apply singular value decomposition (SVD) to evaluate the terms in the matrices. The SVD of a
matrix U is U = AΣB†, where A and B are unitary matrices and Σ is a diagonal matrix. SVD is a generally
useful algorithm, and as such is well implemented and researched for a variety of methods and a realistic method
to use and implement for a real quantum circuit. The value of SVD comes from manipulation of the terms in the
cosine sine decomposition

U =

[
U00 U01

U10 U11

]
=

[
R0CL0 −R0SL1

R1SL0 R1CL1

]
(5)

Setting these terms equal element wise, we produce four equations, one for each U(0,1)(0,1) term. The terms then
bear a striking resemblance to the form of SVD, and we are able to now calculate these values from the results
of A, B, and Σ applied to one of the four sub-matrices.

Finally, we note that because L and R are uniformly controlled gates, we can decompose the gate as

/ R

= Rz(θ)

/ W V

(6)

so that it is physically implementable with W and V being unitary matrices 2n−1 dimensional. This is done using
the eigenvalue decomposition

L =

[
L0 0
0 L1

]
=

[
V 0
0 V

] [
D 0
0 D†

] [
W 0
0 W

]
(7)

Along with the cosine sine decomposition terms, these decompositions combine to give the quantum Shannon
decomposition, which can then be repeated on the Vn operators of dimension 2n−1. This is the key result of this
paper, as we now have a calculable and implementable arbitrary unitary decomposition into gates which are easily
implementable to a quantum computer. Although it is not the best know algorithm to decompose the unitary, it
uses only O(4n) CNOT operations, as opposed to the O(n24n) CNOTs required by the basic decomposition into
Givens Rotations. Theoretically, the minimum gate decomposition approaches a CNOT count of ( 1

4 )(4n−3n−1),
and the decomposition algorithm shown here is shown to use 3

44n − 3
22n CNOT gates [4].

4 Cartan-Based Decomposition

It is also possible to decompose these circuits by exploiting the properties of the Lie group SU(2n). Specially, we
make use of a form of the Cartan decomposition, for which we will briefly summarize the fundamental structures.
Unfortunately there is not space here to elaborate on the fundamentals of Lie groups, but we will address results
for the decomposition of a unitary operator G ∈ SU(2) which are the basis for a Cartan based quantum Shannon
decomposition.

4.1 Background and Notation

SU(2n), the group of 2n× 2n complex unitary matrices with determinant 1 has an associated Lie algebra su(2n),
which means any element G ∈ SU(2n) can be generated by some element g ∈ su(2n) as ei·g. As a basis for su(2n),
we use the space spanned by the permutations of the tensor products of the Pauli matrices and the identity
matrix, called Pauli strings, as we show in Table 2. The number of elements in the basis scales as 4n, as there
are three Pauli matrices and one identity matrix available for each qubit in the tensor product. As a brief note
on notation, we use

X = σx =

[
0 1
1 0

]
Y = σy =

[
0 −i
i 0

]
Z = σz =

[
1 0
0 −1

]
I = σ0 =

[
1 0
0 1

]
(8)

and truncate Pauli strings such as X⊗Y ⊗Z⊗I to XY ZI, writing the product of two Pauli matrices as X ·Y . The
Lie Bracket in su(2n) is the commutator relationship [A,B] = A ·B−B ·A, and we make use of the commutator
identities [a, b] = −[b, a] and

[X,Y ] = 2iZ [Y,Z] =2iX [Z,X] = 2iY [X,X] = 0 [I,X] =0 (9)

Finally, the commutator acts component-wise on the tensor product as [I ⊗ Y, Z ⊗X] = I · Z ⊗ Y ·X − Z ·
I ⊗X · Y = Z ⊗−2iZ = −2iZZ.



su(2) X Y Z

su(4) IX IY IZ
XI XX XY XZ
YI YX YY YZ
ZI ZX ZY ZZ

su(2n) su(22−1)⊗ I su(22−1)⊗X su(22−1)⊗ Y su(22−1)⊗ Z

Table 2: Pauli String Basis for su(2n)

4.2 Cartan Decomposition

A Cartan decomposition of a Lie algebra g is an orthogonal split of g such that g = k1 ⊕m satisfying

[k, k] ⊂ k, [m,m] ⊂ k, [k,m] ⊂ m (10)

A element h is considered a Cartan subalgebra of g if it is a maximal Abelian group h ⊂ m: a largest possible
set of elements in m for which [a, b] = 0 with a, b ∈ h. A well-known property of the Cartan subalgebras is [3]:
Property 1: There is some group element K ∈ K, the space spanned by eik, and some algebra element h ∈ h
for which any element m ∈ m can be decomposed into KhK† = m.

A Cartan decomposition of the group G is given as

G = KHK (11)

for H = eih and K = eik [3]. Additionally, a single element G ∈ G has a Cartan decomposition of the form

G = K0M = K0K1HK
†
1 = ek0ek1ehe−k1 = ek0em (12)

Note, the element M can be decomposed as M = K0K1HK
†
1 due to Property 1, which specifies that an element

m, which generates M as eim, can be written as KhK†, and the additional property that exp(KhK†) = KHK†.

5 Universal 2-qubit Circuit

The basic example of decomposing a system using Cartan decomposition is for a single qubit operator G ∈ SU(2)
generated by g ∈ su(2). The operator, as we can see on the Bloch sphere is equivalent to an arbitrary rotation
over the surface of a unit sphere, is parameterized by coefficients for each of the three terms in the Pauli basis of
su(2) = span{X,Y, Z}. That is, any operator in G ∈ SU(2) can be written as G = eaiX+biY+ciZ . Using quantum
circuits, it is simple to represent any matrix of the form exp(i*(a single Pauli string)) using 2n CNOTs [6], but the
exponential of the sum of non-commuting Pauli matrices is much less simple to evaluate on a circuit. Nominally,
we would separate the terms in the vector g, but with non-commuting terms in the exponential, we are not able
to use the standard identity for commuting a and b ea+b = eaeb. Instead, we need to find a different method to
split G into the product of exponential-of-single-Pauli terms.

For SU(2), we can classify the Pauli basis into a Cartan decomposition by hand, noting that the commutation
of any two Pauli matrices is the third, and the commutation of that third matrix with any of the first two is
the other matrix. Using equation 10, we can see that arbitrarily choosing X to be in m and choosing Z in k,
we have [X,Z] = −2iY ∈ m according to the relationships of equation 10. We can verify that [Y,X] ∈ k, so
k = span{Z} and m = span{Y,X}. X and Y do not commute, so we can select h = X or Y : in this case we choose
h = span{Y } to align with our earlier choice of Rz and Ry rotation gates as universal. From equation 12, there
exist three elements, k0, h, and k1, which together give G = eik0eik1eihe−ik1 = eik2eihe−ik1 = eiαZeiβY e−iγZ =
Rz(2α)Ry(2β)Rz(2γ). So, we have shown that any single qubit operator, up to a global phase, can be decomposed
into a sequence of only three single qubit rotations. An algorithm to perform this decomposition can be found
in Drury and Love, along with, at the time of writing and to the best of my knowledge, the most efficient known
constructive algorithm for unitary decomposition using the Shannon Decomposition [2].

1Fraktur font for the letter k
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